Problem \#1
Given: $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
Prove: $m \angle E B A=m \angle D B C$

Directions: Place the statements on the left and the appropriate reason to the right.

Problem \#2
Given: $\quad A C=A B+A B$

Prove: $A B=B C$

Directions: Place the statements on the left and the appropriate reason to the right

Problem \#3
Given: $\quad \mathrm{M}$ is the midpoint of $\overline{A B}$
Prove: a) $A B=2 \bullet A M$

Directions: Place the statements on the left and the appropriate reason to the right.

Problem \#4
Given: $\quad \overrightarrow{Q S}$ is an angle bisector of $\angle \mathrm{PQR}$
Prove: $\mathrm{m} \angle \mathrm{PQS}=\frac{1}{2} \mathrm{~m} \angle \mathrm{PQR}$
Directions: Place the statements on the left and the appropriate reason to the right.

Problem \#5
Given: $\angle 2 \cong \angle 3$
Prove: $\angle 3 \cong \angle 6$

Directions: Place the statements on the left and the appropriate reason to the right.

Problem \#6

Given: | $\overline{A B}$ |
| :---: |
| $\overline{C B}$ |
| $\perp \overline{B D}$ |
| $\overline{E B}$ |

Prove: $\angle A B D \cong \angle C B E$

Directions: Place the statements on the left and the appropriate reason to the right

Problem \#7

Directions: Place the statements on the left and the appropriate reason to the right.

Problem \#8

Given: $\quad \mathrm{B}$ is the midpoint of $\overline{A C}$ C is the midpoint of $\overline{B D}$

Prove: $\quad A B=C D$

Directions: Place the statements on the left and the appropriate reason to the right.

Problem \#1
$\mathrm{m} \angle 1=\mathrm{m} \angle 3$
$\mathrm{m} \angle \mathrm{EBA}=\mathrm{m} \angle 3+\mathrm{m} \angle 2$
$\mathrm{m} \angle E B A=\mathrm{m} \angle 1+\mathrm{m} \angle 2$
$\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle \mathrm{DBC}$
$\mathrm{m} \angle \mathrm{EBA}=\mathrm{m} \angle \mathrm{DBC}$

Problem \#2
$A C=A B+A B$
$A B+B C=A C$
$A B+A B=A B+B C$
$A B=B C$

Problem \#3
M is the midpoint of $\overline{A B}$
$\overline{A M} \cong \overline{M B}$
$A M=M B$
$A M+M B=A B$
$A M+A M=A B$
$2 A M=A B$
$A M=\frac{1}{2} A B$

Given

Angle Addition Postulate
Substitution Property of Equality
Angle Addition Postulate
Transitive Property of Equality

Given
Segment Addition Postulate
Transitive Property of Equality
Subtraction Property of Equality

Given

Definition of Midpoint
Definition of congruent segments
Segment Addition Postulate
Substitution Property of Equality
Combine Like Terms
Division Property of Equality

Problem \#4
$\overline{Q S}$ is an angle bisector of $\angle \mathrm{PQR}$
$\angle \mathrm{PQS} \cong \angle \mathrm{SQR}$
$\mathrm{m} \angle \mathrm{PQS}=\mathrm{m} \angle \mathrm{SQR}$
$\mathrm{m} \angle \mathrm{PQS}+\mathrm{m} \angle \mathrm{SQR}=\mathrm{m} \angle \mathrm{PQR}$
$\mathrm{m} \angle \mathrm{PQS}+\mathrm{m} \angle \mathrm{PQS}=\mathrm{m} \angle \mathrm{PQR}$
$2 \bullet m \angle P Q S=m \angle P Q R$
$\mathrm{m} \angle \mathrm{PQS}=\frac{1}{2} \mathrm{~m} \angle \mathrm{PQR}$

Given
Definition of Angle Bisector
Definition of Congruent Angles
Angle Addition Postulate
Substitution Property of Equality
Combine Like Terms
Division Property of Equality
$\angle 2 \cong \angle 3$
$\angle 2 \cong \angle 6$
$\angle 3 \cong \angle 6$

Given

Vertical \square 's \cong
Transitive

Problem \#6
$\overline{A B} \perp \overline{B D}$
$\overline{C B} \perp \overline{E B}$
$A B D$ is right angle
\square CBE is right angle
$A B D \cong C B E$
Problem \#7
$\square 1 \cong \square 3$
$\square 1 \cong \square 2$ and $\square 3 \cong \square 4$
$\square 3 \cong \square 2$
$\square 2 \cong \square 4$

Given

Perpendicular \longrightarrow Right Angle
All right angles are congruent

Given
Vertical \square 's \cong
Transitive
Transitive

Problem \# 8

B is the midpoint of $\overline{A C}$
C is the midpoint of $\overline{B D}$

$$
\begin{aligned}
& \overline{A B} \cong \overline{B C} \\
& \overline{B C} \cong \overline{C D} \\
& \overline{A B} \cong \overline{C D} \\
& \mathrm{AB}=\mathrm{CD}
\end{aligned}
$$

Given

Definition of Midpoint

Transitive
Definition of congruent segments

