\qquad
Pre-AP Geometry
Period \qquad
\qquad

Coordinate Notation:

1. If you followed the transformation rule below, where is the image of $(4,3)$?

$$
(x, y) \rightarrow(x+2, y-1) \quad \text { image }:
$$

2. If you followed the transformation rule below, where is the image of $(-1,3)$?

$$
(x, y) \rightarrow(x-2, y-3) \quad \text { image }: .
$$

\qquad

Reflections:

For \#1-3, graph the image. Show the mapping of ordered pairs by listing the pre-image and image points.

1. Find the image $\Delta A^{\prime} B^{\prime} C^{\prime}$ in the line $x=3$

2. Reflect over $y=-x$.

$$
\begin{aligned}
& A(-1,2) \rightarrow \\
& B(3,-1) \rightarrow \\
& C(5,4) \rightarrow
\end{aligned}
$$

$\mathrm{H}(-34) \rightarrow$ \qquad $\mathrm{I}(-3,0) \rightarrow$ \qquad $J(1,0) \rightarrow$ \qquad
3. Graph $A(1,2), B(4,3), C(5,1)$. Reflect across $y=1$ and then $y=-2$.
a) graph the triangle and the lines of reflection
b) graph the image after each given reflection
c) list the coordinates of the each image

Rotations:

A^{\prime} \qquad
B^{\prime} \qquad
C^{\prime} \qquad
$A^{\prime \prime}$ \qquad
$B^{\prime \prime}$ \qquad
$C^{\prime \prime}$ \qquad ****When rotating, ALWAYS rotate in a \qquad direction unless told otherwise.

1. Rotate $\triangle A B C 90^{\circ}$ about the origin.

2. Rotate $B(3,4) 180^{\circ}$ about the origin

Another way to do rotations is to use regular polygons.

3. Find the mapped point from the given point and angle of rotation about O . The pentagon is regular (all sides and angles are equal) How do you find the measure of $\angle A O B$ (the angle of rotation)? \qquad
A) Point A rotated 72° is point \qquad
B) Point C rotated 216° is point \qquad
C) Segment AE rotated 144° is segment \qquad
D) Angle BCD rotated 288° is angle \qquad

Symmetry:

Reflectional Symmetry - when you can draw a line so that the figure on one side of the line is a reflection of the figure on the other side of the line.

Rotational Symmetry - if you can rotate the figure less than or equal to 180 degrees and the resulting figure is the same as the original figure.

1) Which of following shapes have reflectional symmetry? Which have rotational symmetry?

Composition of Transformations:

1. Plot the points $A(1,6) B(3,8) C(2,10)$ to form triangle $A B C$. Then perform the following transformations:
a) rotate 90° counterclockwise
b) translate down 3 units

