Name ______ Period _____ Date _____

Part 1: Angles outside the circle

FIGURE I

FIGURE II

FIGURE III

- 1. What do the numbered angles have in common? ______
- 2. Use a highlighter or colored pencils to mark the intercepted arcs.
- 3. Complete the chart:

	Measure of	To find the measure of the intercepted arcs, count the dots	
	each angle		
Figure I	m∠1 = 45°	m <i>AB</i> =	m <i>CD</i> =
Figure II	m∠2 = 75°	m <i>EF</i> =	m <i>EKG</i> =
Figure III	m∠3 = 60°	m <i>HI</i> =	m <i>HJI</i> =

4. Write a conjecture about angles formed outside the circle.

Conjecture: The measures of the angles formed by secants and tangents that intersect outside the circle are

Example:

5. In circle T shown, $m\angle RCE = 57^{\circ}$ and $\widehat{mRE} = 141^{\circ}$. Determine \widehat{mBL} .

Part 2: Angles inside the circle.

- 6. What do $\angle 4$ and $\angle 5$ have in common?
- 7. Use a highlighter or colored pencils to mark the intercepted arcs.
- 8. Complete the chart:

	Measure of each angle	To find the measure of the intercepted arcs, count the dots	
Figure IV	m∠4 = 75°	m <i>KL</i> =	m <i>MN</i> =
Figure V	m∠5 = 120°	m <i>SV</i> =	m <i>TW</i> =

9. Write a conjecture about angles formed inside the circle.

 $\textbf{Conjecture} \colon \text{The measure of the angles formed by chords that intersect } \underline{\text{inside}} \text{ a circle} \\ \text{are}$

Examples:

10. In circle K shown, $\widehat{mDN} = 144^{\circ}$ and $\widehat{m\angle NCA} = 68^{\circ}$. Determine \widehat{mEA} .

Practice:

1. Find x.

2. Find x

3. Find x.

4. Find x and y.

5. \overrightarrow{AT} and \overrightarrow{TC} are tangents to circle E below. The measure of BC is 100° , and $m\angle$ BCA = 88° . What is $m\angle$ T?

6. In circle X shown, $mAS = 11^{\circ}$ and $mMS = 104^{\circ}$. Determine $m\angle DCM$

